Objective In a microbial bioelectrochemical system, bacteria convert organic matter directly into electrical current. This makes it possible to use the energy content of dissolved organic matter in wastewater to drive electrochemical processes. A bioelectrochemical system consists of two electrodes, an anode and a cathode. Living bacteria oxidize organic matter and transfer electrons to the anode. The electrons flow through an external circuit to the cathode where a compound is reduced. The conditions at the cathode determine the output of the system. For example, we can produce electrical energy, energy-carriers such as hydrogen and methane, and valuable chemicals such as hydrogen peroxide and caustic soda.The aim of this research project is to investigate the design, control, and operation of the bioanode. Depending on the output of the system, we have varying restraints and opportunities for control of the bioanode. We will use mathematical modeling and laboratory experiments to investigate two types of bioelectrochemical processes. In Type 1, the product at the cathode is in focus and the bioanode is simply used to lower the energy consumption of the production process. In Type 2, energy recovery from the wastewater is in focus and the goal is to capture as much as possible of the energy bound up in organic matter. This research project will fill an important knowledge gap in the field of bioelectrochemical systems and contribute to the practical application of this new technology. Fields of science engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processesnatural sciencesbiological sciencesmicrobiologybacteriologynatural scienceschemical scienceselectrochemistrybioelectrochemistrynatural scienceschemical sciencesorganic chemistryaliphatic compoundsnatural sciencesmathematicsapplied mathematicsmathematical model Programme(s) FP7-PEOPLE - Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) Topic(s) FP7-PEOPLE-2011-CIG - Marie-Curie Action: "Career Integration Grants" Call for proposal FP7-PEOPLE-2011-CIG See other projects for this call Funding Scheme MC-CIG - Support for training and career development of researcher (CIG) Coordinator CHALMERS TEKNISKA HOGSKOLA AB Address - 412 96 Goteborg Sweden See on map Region Södra Sverige Västsverige Västra Götalands län Activity type Higher or Secondary Education Establishments Administrative Contact Magnus Holmstrand (Mr.) Links Contact the organisation Opens in new window Website Opens in new window EU contribution No data