Skip to main content

Automorphic Forms and Moduli Spaces of Galois Representations


I propose to solve three problems. The first is to prove Serre’s conjecture for real quadratic fields. I will do this by using automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to improving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.

The second problem is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mezard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms, independently of any fixed mod p Galois representation. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mezard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.

The third problem is to prove a strengthened version of the Gouvea–Mazur conjecture, by completely determining the reduction mod p of certain two-dimensional crystalline representations. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvea-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.

Call for proposal

See other projects for this call


South Kensington Campus Exhibition Road
SW7 2AZ London
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Administrative Contact
Brooke Alasya (Ms.)
EU contribution
€ 100 000