Objective
I seek to understand the molecular origin of cell mechanosensing - the ability of biological cells to sense and respond to the mechanical properties of their environment. Moreover, I want to explore the possibility that propagation of mechanical deformation within soft biomaterials can act as a communication route between neighboring cells. A long term goal is to guide injured axons to establish reconnection with the proper target by directing the axon towards the mechanical deformations generated by the target cell. ‘Cell mechanosensing’ raises some basic science questions, part of which can only be solved by an interdisciplinary-multi-scale approach, combining concepts from macroscopic approaches - such as elasticity theory and rheology - with a molecular point of view, taking into account the intricate interplay of chemical and physical processes. We will use a unique combination of high resolution optical microscopy, single molecule imaging, magnetic tweezers, biomaterial design and characterization, numerical algorithms and theoretical modeling. In particular, our aims include: 1. Characterization of the force generated by neuronal growth cone and its frequency, before and following injury.
2.Developing new engineered protein biomaterials with mechano-sensitive properties and a well defined dynamic viscoelastic profile which are able to support neuronal cell growth. These include biomaterials which: a) Change their fluorescence properties in response to small material deformations in the nanometer range. b) Efficiently propagate and amplify growth-cone-generated mechanical deformations to allow for cell-cell communication. An essential part of this project is studying the dependence of the viscoelastic spectrum of the network on the mechanical properties of the single chain. 3. Identifying the feedback mechanism that enables the cell to regulate its intrinsic elasticity and the forces it applies in response to the mechanical properties of the substrate.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- engineering and technology industrial biotechnology biomaterials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2011-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.