Objective
In this project, a variety of promising candidate systems for use as quantum bits (qubits) on future quantum electronic chips will be brought together and investigated in a truly quantum coherent manner. Static qubits made from superconducting electric circuits, and electrons trapped in islands on semiconductor chips will be coupled to ‘flying’ qubits in the form of quanta of light (photons) and quanta of vibrational motion (phonons) on electronic chips cooled to their lowest quantum mechanical energy state at close to absolute zero. The research will address key questions of how long the fragile quantum nature of information can last in such systems, how the different systems can be made to interact and exchange quantum information, and how they can be brought together to ultimately form the basic building blocks of future quantum computers, such as quantum logic gates and quantum memories.
Fields of science
- natural sciencesphysical sciencesatomic physics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Call for proposal
FP7-PEOPLE-2011-CIG
See other projects for this call
Coordinator
OX1 2JD Oxford
United Kingdom