Objectif
Vaccine development is an empirical process (trial and error) and involves a long, expensive clinical development pipeline to license an efficacious vaccine candidate. Better tools for vaccine evaluation are needed to adapt to a rising number of candidate vaccines entering clinical trials for many diseases. Surrogate biomarkers of immunity offer the possibility of expediting the clinical development by eliminating non-viable candidates earlier in the pipeline, shortening vaccine trial timeframes by giving a proxy measurement for efficacy and by guiding future vaccine design. In the case of malaria and other complex diseases, a surrogate biomarker of immunity has been difficult to achieve with classical immunological assays. We propose using a systems biology analytical approach in two efficacious malaria vaccination models to identify combinatorial biomarkers of protection. First, newly generated cellular transcriptome profiles and previously generated immunological read-outs common to both trials will be integrated into a database for this analysis. An already developed artificial intelligence-based analytical tool that generates biological network maps, transforms experimental data to the map and discriminates transcriptional gene signatures to physiological states (protection or susceptibility) will be applied in both vaccination models. The aim is to determine malaria signatures of protection that will then be refined and validated in an experimentally induced immunity non-human primate model. The optimized model will be further validated on additional samples from the two protective human trials. The identified biomarkers of protection will be used to produce a customised Immunome Chip, which together with traditional immunological read-outs will be used to evaluate vaccine efficacy, shortening times and costs of clinical trials. This strategy may also prove useful for other diseases and support the systems medicine approach.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- sciences naturellessciences biologiqueszoologiemammalogieprimatologie
- sciences médicales et de la santésciences de la santémaladie infectieusepaludisme
- sciences naturellesinformatique et science de l'informationbases de données
- sciences médicales et de la santémédecine fondamentalepharmacologie et pharmacieproduit pharmaceutiquevaccins
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Appel à propositions
FP7-HEALTH-2012-INNOVATION-1
Voir d’autres projets de cet appel
Régime de financement
CP-FP -Coordinateur
08036 Barcelona
Espagne