Final Report Summary - MAGMIST (From the magnetized diffuse interstellar medium to the stars)
The methodology used in the MAGMIST project has been specifically designed to address the multi-scale nature of the star formation process. This includes studies at different scales but also studies that aimed at bridging and connecting various scales. The most important conclusions of the MAGMIST project are as follows:
-the prestellar dense cores, which constitute the mas reservoir of stars and are possibly responsible of setting the stellar mass function, are likely a consequence of gravity and magneto-hydrodynamical turbulence that develop in the interstellar medium, as most of their properties can nicely be reproduced from self-consistent zooming simulations. Unlike previous calculations, ours do not make restricting assumptions on the initial conditions since all structures are formed self-consistently from much larger scales
-feedback processes due to ionising radiation and supernovae remnants are playing, together with magnetic field and turbulence, a determinant role to regulate the star formation rate and the whole ISM structure and dynamics. The star formation rate obtained are very close to the ones inferred observationally
-the initial mass function is largely set-up by local physical processes, which includes the physics of gravitational collapse, the stabilising influence of tidal forces and the gas thermodynamics due, in particular to dust opacity. This renders the final stellar initial mass function relatively insensitive to the large scale conditions and suggests a relative universality of the IMF in good agreement with observation
-the early planet-forming disks, that form around young protostars, are also largely due to local processes, namely magnetic braking and magnetic flux diffusion. This also makes their properties relatively universal provide the magnetic field is strong enough.