Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Aerodynamic and thermal load interactions with lightweight advanced materials for high-speed flight

Objective

The objective is to identify and assess lightweight advanced materials which can withstand ultra high temperatures and heat fluxes enabling high-speed flight above Mach 3. At these high speeds, classical materials used for airframes and propulsion units are not longer feasible and need to be replaced by high-temperature, lightweight materials, with active cooling of some parts. First, the overall design for high-speed transports will be revisited to increase the lift/drag ratio and volumetric efficiency through the "compression lift" and "waverider" principles, taking into account sonic boom reduction. Second, materials and cooling techniques and their interaction with the aero-thermal loads will be addressed for both the airframe and propulsion components. The former will focus on sharp leading edges, intakes and skin materials coping with different aerothermal loads, the latter on combustion chamber liners. After material characterisation and shape definition at specific aero-thermal loadings, dedicated on-ground experiments are conducted. Both Ceramic Matrix Composites (CMC) and heat resistant metals will be tested to evaluate their thermal and oxidiser resistance. In parallel novel cooling techniques based on transpiration and electro-aerodynamic s principles will be investigated. Combined aero-thermal experiments will test various materials specimens with a realistic shape at extreme aero-thermal conditions for elevated flight Mach numbers. Dedicated combustion experiments on CMC combustion chambers will allow the reduction of combustion liner cooling resulting into NOx-reduction and overall thermal efficiency increase. Finally, particular aero-thermal-material interaction will strongly influence the aerothermal loadings. Conjugate heat transfer , transpiration cooling and compressible transition phenomena are investigated and modelled.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-AERO-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

EUROPEAN SPACE AGENCY
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (12)

My booklet 0 0