Skip to main content

Hybrid Quantum Nano-Optomechanics

Objective

"The chief endeavor of the project is to develop, investigate and exploit systems associating nanoscale mechanical resonators with single quantum objects. Such combinations belong in the category of so-called “hybrid nanomechanical systems” which constitutes a rapidly expanding field in modern quantum- and nanophysics.
The benefit of exploring hybrid systems is manifold. From a practical point of view, due to their size, nanoresonators are extremely sensitive to external forces. If associated with a high resolution optical sensor through which the nanoresonator can be non-invasively probed and manipulated, the hybrid system holds promise to act as an ultrasensitive force probe. On a more fundamental level, unexplored quantum regimes become within reach, where the interface between quantum objects and mechanical systems can be thoroughly investigated. From a conceptual point of view, such experiments are of paramount importance as they could reveal the quantum behavior of macroscopic objects.
To accommodate these ideas, I propose to develop and investigate two types of hybrid systems. The first one consists of a single nitrogen-vacancy (NV) defect hosted in a diamond nanocrystal, positioned at the extremity of a nanowire. My team and I recently demonstrated magnetic coupling of the NV spin to the resonator position and thereby evidenced the feasibility of realizing such a quantum to mechanical interface. This novel system can readily be improved to meet the severe requirements of the quantum opto-mechanical experiments envisioned in this project. The second approach also exploits a NV centre, but this time as an integrated part of a diamond resonator. This monolithic system potentially offers an unprecedented coupling, a supreme overall stability, and NV centres with improved characteristics, together expanding the scope of conceivable experiments."

Field of science

  • /engineering and technology/electrical engineering, electronic engineering, information engineering/electronic engineering/sensors/optical sensors

Call for proposal

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

ERC-SG - ERC Starting Grant

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Address
Rue Michel Ange 3
75794 Paris
France
Activity type
Research Organisations
EU contribution
€ 1 792 140
Principal investigator
Olivier Arcizet (Mr.)
Administrative Contact
Guillaume Rochet (Mr.)

Beneficiaries (1)

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
France
EU contribution
€ 1 792 140
Address
Rue Michel Ange 3
75794 Paris
Activity type
Research Organisations
Principal investigator
Olivier Arcizet (Mr.)
Administrative Contact
Guillaume Rochet (Mr.)