Objective
Bacterial infections represent a major and global health problem, which is further aggravated by the rapid and ongoing increase in antibiotic resistance. The limited success in the development of targeted therapies for particular invasive strains can be attributed to our limited knowledge how pathogens modulate their proteome homeostasis in vivo, knowledge that has so far remained elusive due to technical limitations.
Here I propose the use of proteome-wide selected reaction monitoring mass spectrometry (SRM-MS) for pathogen proteome profiling from samples obtained directly from in vivo using group A streptococci (GAS) as a model system. The proposal describes the use of SRM-MS to facilitate the construction of comprehensive and quantitative molecular anatomy knowledge models outlining spatial organization, pathway organization, absolute protein concentration estimations and interaction partners with host for complete microbial proteomes. Using the molecular anatomy as benchmark I intend compare how the proteome homeostasis is controlled in pathogens isolated directly from patients with different degree of disease severity to understand how disease severity, anatomical location and host dependencies effects the proteome homeostasis.
The outlined proposal describes a generic strategy to provide comprehensive understanding of the pathogen adaption directly in vivo and represents a paradigm shift in the field of bacterial infectious disease. This proposal addresses central aspects within the medical microbiology field that has been long sought for but never studied due to technology limitations and will influence the development of the next generation targeted vaccine and therapeutic development programs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsproteomics
- medical and health sciencesbasic medicineanatomy and morphology
- medical and health scienceshealth sciencesinfectious diseases
- medical and health sciencesbasic medicinepharmacology and pharmacydrug resistanceantibiotic resistance
- medical and health sciencesbasic medicinephysiologyhomeostasis
You need to log in or register to use this function
Call for proposal
ERC-2012-StG_20111109
See other projects for this call
Funding Scheme
ERC-SG - ERC Starting GrantHost institution
22100 Lund
Sweden