Skip to main content

Advanced Ablation Characterization and Modelling

Objective

As mentioned in the FP7 space call for Europe to be active in space in the long term, be it in earth-orbit or across the solar system, it is essential that space technologies with key capabilities are at its disposal. This goal requires developments by radical innovation which may then lead to “disruptive technologies”. In this frame new thermal shielding and low risk return strategies are defined as European key activities in the future. In Europe the design of spacecraft for high-energetic interplanetary or sample return flights is still performed with big safety margins, which means high mass. This again leads to higher costs and a reduction in scientific payloads or instrumentation.
Ablative thermal protection materials are a key technology for current and future space exploration missions. However, the mission feasibility is determined by the materials available, and the development of new materials is performed, essentially, by an iterative trial-and-error process. This is due to the absence of validated predictive models for ablative material behaviour – models are tuned to bulk material properties from tests. For each new material, this tuning has to be redone because the models are not of sufficiently high fidelity to be able to make even small extrapolations. This means that materials cannot be designed to a specification to fulfil the needs of a particular mission. The aim of this project is to make a substantial step towards a predictive model of an ablative thermal protection system by incorporating aspects of high fidelity mesoscale ablator physics within a modular framework.
In order to successfully develop such physics modules, the understanding of the fundamental processes occurring within the ablative materials must be improved. To this end, existing ablative materials will be tested in the most powerful European long duration high enthalpy facilities using both standard instrumentation and advanced measurement techniques. From the data obtained, and the state-of-the-art knowledge of ablator physical processes, modules for the specific processes of internal gas flow, internal radiation and gas-surface interaction will be developed to fit inside an overall multi-scale ablator modelling scheme. The improvements made in the representation of an ablative material will be validated against the ground testing, and this advanced ablator model will be applied to realistic flight configurations to demonstrate the impact of the enhanced physics on the understanding of real ablator performance.
The existence of this capability will allow improvements in the efficiency and cost of developing advanced new ablative materials which are tailored to meet the specifications of Europe’s future mission needs. In order to reach this objective, the ABLAMOD project brings substantial expertise from across Europe in ablator materials, thermochemistry, microfluidics, entry systems and instrumentation.

Call for proposal

FP7-SPACE-2012-1
See other projects for this call

Coordinator

DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Address
Linder Hohe
51147 Koln
Germany

See on map

Activity type
Research Organisations
Administrative Contact
Homa Heybati (Ms.)
EU contribution
€ 748 041,75

Participants (9)

AIRBUS DEFENCE AND SPACE SAS
France
EU contribution
€ 94 045
Address
31 Rue Des Cosmonautes Zi Du Palays
31402 Toulouse Cedex

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Administrative Contact
Jean Marc Bouilly (Mr.)
AVIO SPA
Italy
EU contribution
€ 130 068
Address
Via Antonio Salandra N18
00187 Roma

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Administrative Contact
Mauro Balduccini (Mr.)
C.I.R.A. CENTRO ITALIANO RICERCHE AEROSPAZIALI SCPA
Italy
EU contribution
€ 203 889
Address
Via Maiorise
81043 Capua

See on map

Activity type
Research Organisations
Administrative Contact
Federico Tammaro (Mr.)
FLUID GRAVITY ENGINEERING LIMITED
United Kingdom
EU contribution
€ 140 540
Address
West Street, The Old Coach House 1
PO10 7DX Emsworth

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Administrative Contact
James Merrifield (Dr.)
UNIVERSITY OF STRATHCLYDE
United Kingdom
EU contribution
€ 181 550
Address
Richmond Street 16
G1 1XQ Glasgow

See on map

Activity type
Higher or Secondary Education Establishments
Administrative Contact
Martin Gregory (Mr.)
VON KARMAN INSTITUTE FOR FLUID DYNAMICS
Belgium
EU contribution
€ 238 160,25
Address
Waterloose Steenweg, 72
1640 Sint-genesius-rode

See on map

Activity type
Research Organisations
Administrative Contact
Olivier Chazot (Dr.)
AMORIM CORK COMPOSITES SA
Portugal
EU contribution
€ 55 829
Address
Rua De Meladas 260
4536 902 Mozelos Vfr

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Administrative Contact
Pedro Soares (Mr.)
AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH
Austria
EU contribution
€ 124 431
Address
Giefinggasse 4
1210 Wien

See on map

Activity type
Research Organisations
Administrative Contact
Wolfgang Hohenauer (Dr.)
VEREIN FUER PRAKTISCHE GIESSEREIFORSCHUNG
Austria
EU contribution
€ 65 352
Address
Parkstrasse 21
8700 Leoben

See on map

Activity type
Research Organisations
Administrative Contact
Erhard Kaschnitz (Dr.)