Objective
Dye-sensitized solar cells (DSSC) are a promising new generation of photovoltaic which have relatively high performance compared to silicon-based solar cells in many non-ideal light environments such as dim, diffuse and indoor light. They are on the verge of wide-scale commercialization but still face challenging issues to solve on long-term stability, materials cost and ability to recycle. Many of these issues are rooted in the liquid phase of the cell, the dye / electrolyte pairing. In particular, the reliance on the rare earth Ruthenium as the active constituent of the dye has strong implications on the raw material cost and could potentially be difficult to source in the long term. The ADIOS-Ru project aims to develop a suite of materials for highly stable, low cost DSSC with immediate commercialisation potential. Organic dyes have reached an advanced stage in laboratory development and the RTD partners will undergo selection, modification, analysis and stability improvement tasks in order to provide the SME partners with a low cost alternative to the universally used Ruthenium dye. An ionic liquid electrolyte with tailored properties to support the dye performance will be selected and developed. The SME partners will aid in materials validation, accelerated stability testing amd lab to industrial scaling of production, and design and validate a DSSC device tuned specifically for the dye/electrolyte combination. The RTD performers in the consortium are leading European institutes in the field of DSSC, with numerous publications and patents relating to the development of the technology. The SMEs are the furthest advanced value chain members in the DSSC market, and therefore have the industrial capability to quickly exploit the results of this project. The SMEs have complementary, non-conflicting roles in the supply of materials for DSSC and the production of the final devices, and will work in cooperation to build European leadership in the DSSC market.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Topic(s)
Call for proposal
FP7-SME-2012
See other projects for this call
Funding Scheme
BSG-SME - Research for SMEsCoordinator
18 Dublin
Ireland