Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Biomineralization for lithography and microelectronics

Objective

The impact of biomineralization processes on lithographic and microelectronic production processes has not yet been explored. As opposed to conventional industrial manufacturing, the biological synthesis of silica occurs under mild physiological conditions of low temperatures and pressures, with clear advantages in terms of cost-effectiveness, parallel production, and impact on the environment. The integration of nature-mimic biomineralization processes with micro- and nanofabrication will be a unique route to make them usable in the medium-long term for industrial application and production.

In particular, some peculiar proteins of sponges (silicateins) catalyse the reaction of silica polymerisation to give ordered structures. Besides this catalytic activity, when the proteins are assembled into mesoscopic filaments, they serve as scaffolds that spatially direct the synthesis of polysiloxanes over the surface of the protein filaments.

Hence, these biomolecules present the combined characteristics of:
(i) chemical action (catalysis) for the formation of silica, and
(ii) patterning action, by driving the silica on the surface of the filaments.

We plan to exploit this unique combination within a novel technology, whose demonstrator will be the realization of patterned, aligned assembly of silica fibres, and their employment as insulating layers for prototype transistor devices. Two parallel strategies will be pursued for the production of large amounts of silicatein: (i) expression of the recombinant proteins, and (ii) development of in vitro primmorph cultures. Soft lithography techniques will be used for the controlled patterned deposition of molecules. Specific approaches will be designed and implemented, for the hierarchical assembly of silicatein fibres into functional networks. The multidisciplinary team involved in this project has the know-how in biosilicification/lithography and the intellectual property rights in enzymatic silica formation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-NMP-TI-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

JOHANNES GUTENBERG UNIVERSITAET MAINZ
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0