Objective
For PEM Fuel Cells to attain economic viability for mass production, catalyst cost must be reduced. Currently, platinum-based supported nanoparticle catalysts, are used for the hydrogen oxidation reaction at the anode. The replacement of such catalysts by cheaper non-noble alternatives is proposed. Currently, noble metal based systems alone exhibit both the stability required in the strongly acidic humidified environment of the fuel cell, and the sufficiently large current densities required. Hence, the challenge is to find binary, ternary or even quaternary non-noble systems, which have the necessarily high rates of hydrogen oxidation and which are stable in the environment of the fuel cell.
In addition, new developments in membrane technology highlight the need to explore the performance of catalysts in a higher temperature regime (in the region of 130-200°C). To accomplish these aims the following novel route will be used involving a multidisciplinary approach from theoretical design through to the final operating membrane electrode assembly. Initially, Density Functional Theory studies will be used to calculate critical bond energies and activation barriers of processes relevant to the fuel cell electrodes and produce trends in reactivities for metal alloy species and intermetallic compounds.
The next step will be the fast screening of catalysts for these descriptors using combinatorial methods. These two preliminary steps will determine the most promising systems and compositions to take forward into the subsequent stages. The selected catalysts will then be produced as carbon-supported nanoparticles and subsequently investigated with regards to their performance for the hydrogen oxidation reaction, their stability to acidic media and tolerance to CO and CO2. Finally, the behaviour and stability of selected catalysts will be assessed within the single cell environment and their potential for large-scale production investigated.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology chemical engineering separation technologies
- natural sciences chemical sciences catalysis
- engineering and technology nanotechnology nano-materials
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2004-NMP-TI-4
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.