Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Non-noble catalysts for proton exchange membrane fuel cell anodes

Objective

For PEM Fuel Cells to attain economic viability for mass production, catalyst cost must be reduced. Currently, platinum-based supported nanoparticle catalysts, are used for the hydrogen oxidation reaction at the anode. The replacement of such catalysts by cheaper non-noble alternatives is proposed. Currently, noble metal based systems alone exhibit both the stability required in the strongly acidic humidified environment of the fuel cell, and the sufficiently large current densities required. Hence, the challenge is to find binary, ternary or even quaternary non-noble systems, which have the necessarily high rates of hydrogen oxidation and which are stable in the environment of the fuel cell.

In addition, new developments in membrane technology highlight the need to explore the performance of catalysts in a higher temperature regime (in the region of 130-200°C). To accomplish these aims the following novel route will be used involving a multidisciplinary approach from theoretical design through to the final operating membrane electrode assembly. Initially, Density Functional Theory studies will be used to calculate critical bond energies and activation barriers of processes relevant to the fuel cell electrodes and produce trends in reactivities for metal alloy species and intermetallic compounds.

The next step will be the fast screening of catalysts for these descriptors using combinatorial methods. These two preliminary steps will determine the most promising systems and compositions to take forward into the subsequent stages. The selected catalysts will then be produced as carbon-supported nanoparticles and subsequently investigated with regards to their performance for the hydrogen oxidation reaction, their stability to acidic media and tolerance to CO and CO2. Finally, the behaviour and stability of selected catalysts will be assessed within the single cell environment and their potential for large-scale production investigated.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-NMP-TI-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

DANMARKS TEKNISKE UNIVERSITET (TECHNICAL UNIVERSITY OF DENMARK)
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (6)

My booklet 0 0