Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Mechanistic analysis of DNA damage bypass in the context of chromatin and genome replication

Objective

During its duplication, DNA, the carrier of our genetic information, is particularly vulnerable to decay, and the capacity of cells to deal with replication stress has been recognised as a major factor protecting us from genome instability and cancer. A major pathway that allows cells to overcome or bypass DNA lesions during replication is activated by posttranslational modifications of the sliding clamp protein PCNA. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases, polyubiquitylation is required for an error-free pathway that involves template switching to the undamaged sister chromatid, involving a recombination-like mechanism. Hence, damage bypass contributes to genome maintenance, but can itself be a source of genomic instability. It is therefore not surprising that PRR is a highly regulated process whose activity is limited to the appropriate situations by stringent control mechanisms.
The proposed project aims at understanding DNA damage bypass in its cellular context. Using a combination of new and established technology, we will address the role of chromatin dynamics in the reaction, its spatial and temporal control in relation to genome replication, and its coordination with other PCNA-dependent processes in the cell. To this end, we will establish technology to isolate and analyse the composition of damage bypass tracts, develop and implement novel methods to induce lesions and image damage processing in live cells, and exploit a spectrum of biochemical and biophysical techniques to investigate the role of PCNA as a molecular tool-belt in the coordination of its interaction partners. In combination, these approaches will give important insight into how the replication of damaged DNA is managed with high efficiency and accuracy within the cell.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120314
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

INSTITUT FUR MOLEKULARE BIOLOGIE GGMBH
EU contribution
€ 2 476 388,40
Address
ACKERMANNWEG 4
55128 Mainz
Germany

See on map

Region
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0