Objective
"MIFACRIT aims at developing a failure criterion for fiber reinforced polymer (FRP) structures. This criterion shall allow reliability and lifetime assessments of structural parts and systems made of several stack configurations. It shall be deduced from mechanical effects within the microstructure of the FRP structures in order to cover various mechanical loading situations. This ambitious goal is approached by a symbiotic combination of experimental test and anal-ysis work with in-depth assessment and evaluation based on numerical simulation applying fracture / damage mechanics concepts. The material tests comprise visco-elastic characteri-zation and stress tests applying constant strain rate and cyclic loads, respectively. The tests are performed at different temperatures and frequencies. Most importantly, they include a variety of loading situations such as tensile and bending loads but also combinations of normal and shear components. The analysis determines the visco-elastic material properties and the micro-structural effects responsible for damage and failure of the FRP structure in a comprehensive way. The in-depth analysis of the damage and failure effects by means of numerical simulation will apply a two stage (global / local) sub-modeling strategy. The es-sential model parameters are calibrated by measured data and the simulation results are verified by the experimental findings. Combining experiment and simulation this way, the common link between the failure effects caused by the various loading situations will be shown and explained by means of an objective mechanical criterion, which will be indentified and validated throughout the MIFRACRIT project. In addition, threshold quantities will be determined for the criterion found to ultimately provide the means for precise lifetime predic-tions based on this physics of the failure approach."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologymaterials engineeringfibers
- natural scienceschemical sciencespolymer sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
SP1-JTI-CS-2012-01
See other projects for this call
Funding Scheme
JTI-CS - Joint Technology Initiatives - Clean SkyCoordinator
82229 SEEFELD B. MUNCHEN
Germany