Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Invisible Protein States in Bacterial Chemotaxis: a relaxation dispersion NMR study

Objective

The process by which bacteria bias their motility, enabling them to move towards favourable chemical stimuli and away from unfavourable ones, is called chemotaxis. Motility and chemotaxis are essential for the virulence of many medically important bacteria, including Helicobacter pylori, and also play a role in agriculturally important bacteria, such as the nitrogen-fixing Azospirillum brasilense. The chemotaxis signalling network of E. coli has been extensively studied. The small 14kD protein CheY is an important response regulator in this chemotaxis signalling network, and conserved across all systems. It undergoes a conformational change when activated by phosphorylation which increases its affinity for the FliM component of the flagellar motor switch complex. This results in a change in the direction of the flagellar motor rotation. Most bacteria have much more complex chemosensory systems than those of E. coli. Rhodobacter sphaeroides, the subject of this proposal, has multiple homologues of the E. coli chemosensory proteins. For example, it produces six homologues of the response regulator CheY. These CheY’s, CheY1/2/3/4/5/6, are localized to and are regulated by different clusters of chemosensory proteins in the cell and, while they all bind the motor switch, they have different effects on chemotaxis. The aim of this project is to understand, at the level of individual amino acids, how these six highly homologous CheY proteins are fine-tuned to carry out their specific roles. State-of-the-art NMR methods will be used to study the structure and dynamics of several CheY’s in their inactive and active states. Low populations of ‘active-like’ conformations that exist in unphosphorylated, inactive CheY’s will be characterized using NMR relaxation dispersion methods. These ‘invisible’ states are likely to play a crucial role in the activation mechanism of the CheY’s, and differences observed for the six homologues will help in understanding their specific roles.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 231 283,20
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0