Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Incorporation of Aquaporins in Membranes for Industrial Applications

Objective

In all living cells, channels transporting water - aquaporins - exist. They are proteins, which only transport pure H2O molecules. They have a unique selectivity and are extremely efficient being nature's own membrane systems. The purpose is to investigate whether these unique features can be industrially exploited: Recombinant aquaporin molecules will be embedded into water filtration membranes. Nano-biotechnological research of water transport in various organisms shows that aquaporins have 100% selectivity: Only water molecules pass. They also maintain high water permeation rates. Membrane technology is another rapidly developing technology within filtration and separation. Substantial research is done to enhance efficiency of membranes.

The MEMBAQ project combines these two research spearheads. This combination has never been done before. A new filtration membrane with aquaporins is in theory up to 50 times more efficient (energy input reduction). It is truly radical innovation of the water industries, for instance for water purification (billions of EUR is spent every year), salinity gradient energy production (exploitable potential is 2000TWh annually), waste water reclamation (water re-use).

The MEMBAQ project will:
1) produce recombinant aquaporin,
2) design nanotechnological membrane by means of computer simulation,
3) incorporate aquaporins into stable membranes,
4) engineer membranes based on characterising towards pressure, ph etc.,
5) and finally test such membranes in three applications: Water purification, osmotic energy, and waste water reclamation for re-use. US and Japan invest significantly more per capita than EU in nanotechnology.

This gap is expected to widen in the next few years. In MEMBAQ, we use real market needs in the water sector as a driver for accelerated research and innovation in nanotechnology. Enormous potentials in filtering other fluids and gasses with natural proteins embedded in membranes exist.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-NMP-TI-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

DHI - INSTITUT FOR VAND OG MILJOE (DHI WATER AND ENVIRONMENT)
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0