Skip to main content

Investigating the Arthropod Segmentation Clock that controls Sequential Segment Formation during Arthropod Development and its Potentially Ancient Evolutionary Origins

Objective

Many biological processes, with relevance to human development and disease, occur under the control of 'molecular clocks'. One such process is the rhythmical formation of somites during vertebrate embryogenesis. Somites are blocks of tissue that give rise to reiterated vertebrae and their associated muscle. The sequential formation of somites along the body axis of vertebrate embryos occurs via the activities of the vertebrate segmentation clock. My recent work has shown that the body units (segments) of an arthropod, the beetle Tribolium castaneum, also form via the activities of a segmentation clock. This finding suggests that vertebrate somites and arthropod segments form using similar developmental principles. Given the evolutionary distance separating vertebrates and arthropods this finding might also imply that a segmentation clock played an ancient and ancestral role in animal development. However, we have so far only identified two genes involved in the Tribolium clock, compared to 40-100 unrelated genes involved in the segmentation clocks of model vertebrates, making it too early to conclude that the arthropod and vertebrate segmentation clocks are evolutionarily related. I propose a series of genetic and genome-wide approaches to systematically test this idea. A novel, state-of-the-art, transcriptome screen will be used to determine the number and identity of genes involved in the Tribolium segmentation clock. Reverse genetic and transgenic approaches will be used to determine the regulatory interactions underlying the Tribolium clock. This constitutes an ambitious attempt to determine if the arthropod and vertebrate segmentation clocks are evolutionary related, knowledge that would have profound implications for our understanding of the evolution of all animals. It will also help establish Tribolium as a powerful invertebrate model for studying the principles underlying the activities of molecular clocks.

Field of science

  • /social sciences/other social sciences/social sciences interdisciplinary/sustainable development
  • /medical and health sciences/clinical medicine/embryology

Call for proposal

FP7-PEOPLE-2012-CIG
See other projects for this call

Funding Scheme

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

UNIVERSITY OF LEEDS
Address
Woodhouse Lane
LS2 9JT Leeds
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 100 000
Administrative Contact
Benjamin Williams (Mr.)