Objective
Upper limb prostheses have made considerable scientific progress in the last 20 years. This progress though is based on velocity control, which is not the best option for subconscious control. Extended Physiological Proprioception (EPP) provides position control and has been proven to be better as a control methodology for upper-limb prostheses than velocity control. EPP is difficult to implement since it requires: (a) the use of a harness or a post-amputation cineplasty surgical procedure and (b) a direct mechanical linkage (Bowden cable) between the control site and the prosthesis. For the above shortcomings, EPP was abandoned in the later years. We propose a biomechatronics-based master/slave topology which is going to provide an EPP-equivalent control but without the use of a harness, cineplasty, or Bowden cable. The proposed control uses an implanted tendon force and position transducer (TETRA) in series to specific muscles/tendons implanted at the time of amputation, providing an input source for the commanding signal. This signal - conditioned inside the body - is transmitted wirelessly to the Master Motor Controller which will drive the prosthesis proportionally to the commanding signal. Position, velocity and force sensors on the prosthesis will be inputs to the Slave Motor Controller which will provide as output a tactor proprioceptive feedback on the skin of the amputated limb proportional to the position, velocity and force of the prosthesis. This output from the tactor is going to be integrated by the skin mechanoreceptors of the skin of the amputee and will provide a proprioceptive feedback status of the prosthesis which will be integrated subconsciously by the human and taken into account at the next commanding signal stemming from the position, velocity and force of the contracted muscletendon complex. This architecture will provide an integrated EPP-equivalent control scheme for upper-limb prosthesis without the disadvantages of previous EPP config.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics topology
- medical and health sciences clinical medicine surgery surgical procedures
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- medical and health sciences medical biotechnology implants
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2012-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
157 72 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.