European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Identifying the immune and microbial network controlling the IL-22 – IL-22bp axis to open the doors for targeted therapies

Objective

Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. One hypothesis is that the same factors important for wound healing, if left unchecked, also promote tumorigenesis. Tight control by a sensor of tissue damage should induce these factors to promote tissue repair, while limiting their activity to prevent development of cancer.
IL-22, a prototypical tissue repair factor, plays an important role in a wide variety of intestinal disease including infection, wound healing, colitis, and cancer. Indeed, IL-22 has protective and detrimental effects dependent on the milieu and disease suggesting that proper regulation is required. IL-22 expression is directly regulated, additionally a soluble IL-22 receptor (IL-22 binding protein; IL-22bp), can bind and neutralize IL-22. We reported recently that sensing of intestinal tissue damage and components of the microbiota via the NLRP3 or NLRP6 inflammasomes led to a down regulation of IL-22bp, thereby increasing bioavailability of IL-22. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumor development if not controlled by IL-22bp during the recovery phase.
Accordingly a spatial and temporal regulation of IL-22 is crucial. Hence, global administration or blockade of IL-22 is unlikely to be therapeutically beneficial. We are using several newly generated conditional knock-out (cCasp1-/-, cIL-18R-/-, cIL-18-/-, cIL-22R1-/-), knock-in (IL-22 BFP), and gnotobiotic mice, aiming to analyze the cellular and microbial network regulating the IL-22 – IL-22bp axis at a resolution previously unfeasible. Our results will provide novel insights into the network between microflora, epithelium, and immune system regulating tissue regeneration and tumor development, and can lead to therapies for potentially a wide variety of intestinal diseases, such as infection, colon cancer, IBD, or wound healing.

Call for proposal

ERC-2013-StG
See other projects for this call

Host institution

UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
EU contribution
€ 1 073 760,00
Address
Martinistrasse 52
20251 Hamburg
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Higher or Secondary Education Establishments
Principal investigator
Samuel Huber (Dr.)
Administrative Contact
Francis Huber (Dr.)
Links
Total cost
No data

Beneficiaries (2)