Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Structural and mechanistic studies of RNA-guided and RNA-targeting antiviral defense pathways

Objective

The evolutionary pressures exerted by viruses on their host cells constitute a major force that drives the evolution of cellular antiviral mechanisms. The proposed research is motivated by our interest in the roles of protein-RNA interactions in both prokaryotic and eukaryotic antiviral pathways and will proceed in two directions. The first project stems from our current work on the CRISPR pathway, a recently discovered RNA-guided adaptive defense mechanism in bacteria and archaea that silences mobile genetic elements such as viruses (bacteriophages) and plasmids. CRISPR systems rely on short RNAs (crRNAs) that associate with CRISPR-associated (Cas) proteins and function as sequence-specific guides in the detection and destruction of invading nucleic acids. To obtain molecular insights into the mechanisms of crRNA-guided interference, we will pursue structural and functional studies of DNA-targeting ribonuceoprotein complexes from type II and III CRISPR systems. Our work will shed light on the function of these systems in microbial pathogenesis and provide a framework for the informed engineering of RNA-guided gene targeting technologies. The second proposed research direction centres on RNA-targeting antiviral strategies employed by the human innate immune system. Here, our work will focus on structural studies of major interferon-induced effector proteins, initially examining the allosteric activation mechanism of RNase L and subsequently focusing on other antiviral nucleases and RNA helicases, as well as mechanisms by which RNA viruses evade the innate immune response of the host. In our investigations, we plan to approach these questions using an integrated strategy combining structural biology, biochemistry and biophysics with cell-based functional studies. Together, our studies will provide fundamental molecular insights into RNA-centred antiviral mechanisms and their impact on human health and disease.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

University of Zurich
EU contribution
€ 1 467 180,00
Address
RAMISTRASSE 71
8006 ZURICH
Switzerland

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0