European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Quantum Mesoscopics with Vacuum Trapped Nanoparticles

Objectif

The objective of this project is to control the dynamics of a nanoscale object with unprecedented precision and to study interactions on the mesoscale, - the grey zone between the discrete atomistic world and the continuous world of macroscopic objects.

A single nanoparticle will be captured by the gradient force of a focused laser beam in ultrahigh vacuum and its center-of-mass motion will be controlled by optical back-action. To cool the nanoparticle to its quantum ground state we will explore active parametric feedback cooling in combination with passive cavity-based cooling.

A laser-trapped nanoparticle is physically decoupled from its environment, which guarantees extremely long coherence times and quality factors as high as 10^11 in ultrahigh vacuum. Force sensitivities of 10^(-20) Newtons in a bandwidth of 1 Hz can be achieved, which outperforms other measurement techniques by orders of magnitude. In this project, we will use a laser-trapped nanoparticle as a local probe for measuring mesoscopic interactions, such as Casimir forces, vacuum friction, non-equilibrium dynamics and phase transitions, with unprecedented accuracy.

We will also measure the dynamics of nanoparticles in double-well potentials created by two laser beams with closely spaced foci. A pair of trapped nanoparticles defines a highly controllable coupled-oscillator model, which can be used for studying strong coupling, level splitting, and adiabatic energy transfer at the quantum - classical barrier.

A nanoparticle cooled to its quantum ground state opens up a plethora of fundamental studies, such as the collapse of quantum superposition states under the influence of noise and gravity-induced quantum state reduction. This project will also open up new directions for precision metrology and provide unprecedented control over the dynamics of matter on the nanometer scale.

Appel à propositions

ERC-2013-ADG
Voir d’autres projets de cet appel

Régime de financement

ERC-AG - ERC Advanced Grant

Institution d’accueil

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Contribution de l’UE
€ 2 499 471,00
Adresse
Raemistrasse 101
8092 Zuerich
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Zürich Zürich
Type d’activité
Higher or Secondary Education Establishments
Chercheur principal
Lukas Novotny (Prof.)
Contact administratif
Lukas Novotny (Prof.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)