Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Imaging the transfer function of a cortical input layer

Objective

The functional properties of local neuronal microcircuits determine the computational capacity of specialized brain structures and drive animal behaviour. The cerebellum is a specialized anatomical structure that is involved in the learning and execution of motor coordination.

It contains only a handful of morphological cell types that have been extensively characterized. Theoretical calculations and computer modeling studies have suggested several ways in which the connectivity and physiological activity might be translated into motor control.

However, experimental validation of the input-output function of the cerebellar microcircuit is still lacking. We propose an original experimental paradigm to unravel how the cerebellar cortical circuit processes incoming sensory-motor inputs in its input layer. First, we will mimic physiological cortical inputs in a reduced preparation of the vestibulo-cerebellum. Secondly, we will monitor simultaneously the activity of multiple identified neurons within the circuit in situ.

To this end we will use an innovative multi-photon microscope that has been developed in the sponsor's laboratory in Paris. This unique device, based on acousto-optic deflectors-operated beam steering, performs 250 kHz digital scanning as well as digital photon counting.

It is a promising tool to perform long-duration optical multiunit recordings (50 cells) with millisecond temporal resolution in situ. Additionally, the improved spatial and temporal resolution afforded by acousto-optical beam steering allows distributed excitation of hundreds of points in a plane.

Combining this technology with glutamate uncaging will allow us to study integration of synaptic inputs by stimulating controlled physiological patterns of neuronal excitation that mimic cortical inputs. Together, these innovative techniques bear great promise to improve our understanding of the computational dynamics in brain structures.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinator

ECOLE NORMALE SUPÉRIEURE
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0