Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Design of adaptive artificial facette eyes, micro-optical fabrication using lithography, characterisation and application

Objective

Today we live in a world completely dominated by vision with a strong tendency to a constant increase of visual information. However, miniaturization of elements is done by applying similar optical principles known to the designers for many decades.

Novel fabrication technologies are permanently developed and applied, but there is no consequent search for new vision principles to fully exploit the newly gained technological capabilities that allow completely new and unexpected fields of application. Main re search projects at the Fraunhofer-Institute are related to these topics.

Based on a strong experience in optics engineering and a well-established facility of optical fabrication technology from macro- to nanoscale novel optical systems are developed. Recently demonstrated bio-inspired vision systems such as planar artificial compound eyes for ultra-compact image acquisition are just a first step in this direction.

Within the proposed project, novel vision systems will be designed and manufactured applying electron-beam- and photo-lithography. The main focus of research is related to artificial receptor arrays on a curved basis. This is a highly demanding and at the same time promising topic not only for artificial compound eyes but also for the simplification of classical imaging systems.

The major difference of natural and artificial image acquisition systems at this stage is the planar arrangement of the artificial receptor arrays compared to the curved geometry of the natural ones. This is the consequence of today's limitation to planar lithographic patterning technologies.

The advantages of a curved basis compared to a planar one are obvious: There are the immanence of a large field of view, the avoiding of off-axis aberrations and declining illumination with increasing field angle. Different technologies are to be applied and evaluated such as laser-lithography on curved surfaces and polymer (flexible) artificial receptor arrays.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E. V.
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0