Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Dynamics and complexity in synthetic protein networks

Objective

Synthetic biology aims to assemble unrelated biomolecular parts (genes, proteins) into artificial networks with well-defined dynamic behaviour. This would help elucidating the working principles of complex biological systems but could later also lead to the design of self-organising, interoperating, intelligent bionanotechnological devices. The field has so far mainly focussed on the engineering of transcriptional regulatory networks, which are slow and represent only a fraction of cellular control systems. I plan to implement synthetic protein network motifs (feedback loops, toggle switches) operating in human cell lines. Special emphasis will be put on the design of swappable interfaces that allow the exchange and rewiring of the different components. Raw building blocks will derive from modular proteins that transduct signals via auto-inhibition or spatial proximity between individual domains.

Molecular engineering will be assisted by computational protein design. Individual domains will be labelled with genetically targeted small molecule fluorescence markers to follow and verify their status and interaction in vivo. This will yield parameters for the design and simulation of different networks, which can then be tested in vivo.

The synthetic systems will hence be controlled on two levels of complexity:
(1) The careful labelling of interacting players will reveal deviations from reaction network simulations.
(2) Iterations of protein design, molecular simulation and network implementation will correlate perturbations of protein structure and dynamics with network-level effects and may show whether and how the complex dynamics of single proteins affects the functioning of cellular networks.

Through this work, I hope to complement my mainly computational background with a portfolio of experimental techniques, systems biology know-how and strong collaborations that allow for independent research at the cross roads of molecular and cellular complexity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

CENTRE DE REGULACIÓ GENÒMICA
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0