Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Impact of mesoscale dynamics and aerosols on the lifecycle of cirrus clouds

Objective

One of the most crucial issues for predicting future climate change is the role of clouds. Clouds can warm and cool the atmosphere depending on their properties like water content, droplet size and cloud thickness. Unfortunately, our knowledge on clouds is limited and due to the insufficient representation of cloud processes in existing climate models it is difficult to predict the role of clouds in a changing climate. We want to focus on the high level clouds (cirrus clouds) consisting purely of ice crystals. These clouds cover approximately 20-30% of the Earth's surface. For cirrus clouds, a warming of the atmosphere is possible.

However, it is rather difficult to provide estimates for the radiative effect of cirrus clouds because very little is known about the life cycle of cirrus clouds. In global climate models (GCMs) usually only the formation of cirrus clouds by synoptical dynamics (e.g. uplift along warm fronts) is regarded. However, recent studies have showed that the restriction on these processes lead to an underestimation of cirrus clouds in GCMs, because the formation of cirrus clouds due to mesoscale waves has not be taken into account. Additionally, it is not clear, how aerosols, which affected seriously the formation of cirrus clouds at synoptical conditions, will contribute to the life cycle of cirrus clouds generated by waves. Therefore, we want to study the impacts of mesoscale dynamics and aerosols on the life cycle of cirrus clouds using a highly resolved model including a complete ice microphysics.

Our objectives are to improve our knowledge about cirrus clouds and to determine the impact of dynamics versus aerosols for these clouds. From these new insights we will be able to improve our existing cirrus cloud parameterisations in t he GCMs and to develop new parameterisations, which will lead to better estimates of the radiative impact of cirrus clouds on climate.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

EIDGENOSSISCHE TECHNISCHE HOCHSCHULE ZURICH
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0