Objective
Calcite (CaCO3) plays a role in many public and industrial regimes that are critical for the health and economic well-being of society, but in many cases, a lack of understanding of the fundamental physical and chemical properties controlling calcite growth and dissolution translates to direct problems or to inefficiency in water treatment processes.
A common method for removing toxic trace-metal contamination during water treatment is to add lime (Ca(OH)2 or CaO). Trace metals are trapped in growing calcite as Ca combines with CO3 from the water.
However, production of lime requires burning of calcite, often in the form of limestone or chalk. This emits CO2, and though some CO2 is consumed during water treatment, considerable energy is required for lime production, which also contributes to the atmospheric carbon load. If a method could be developed to treat water directly with natural calcite, without first converting it to lime, considerable energy could be saved and CO2 emissions could be reduced.
We will investigate methods to alter the surface properties of chalk, to make it more effective at trapping trace metals. Our approach is to promote Ostwald ripening, the natural process where small particles dissolve to provide material for growth of larger particles. The growing calcite traps trace-metals, removing them from the water. To achieve this, we will apply nano-technological methods for characterising particle surfaces and use a bio-technological approach to develop environmentally friendly enzymes that can degrade the organic coatings on chalk particles, which are known to inhibit natural recrystallisation.
The Science and Technology results will lead to improved treatment processes for clean drinking water, and a decreased need for lime production with less consequent emissions of CO2, thus significantly improving energy efficiency and environment sustainability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering water treatment processes drinking water treatment processes
- engineering and technology environmental engineering energy and fuels renewable energy
- engineering and technology environmental engineering ecosystem-based management climatic change mitigation
- engineering and technology materials engineering coating and films
- engineering and technology environmental engineering carbon capture engineering
You need to log in or register to use this function
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2005-MOBILITY-5
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
COPENHAGEN K
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.