European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-29

Engineered modular bacterial hydrogen photo-production of hydrogen

Objectif

Our project aims at designing reusable, standardized molecular building blocks that will produce a photosynthetic bacterium containing engineered chemical pathways for competitive, clean and sustainable hydrogen production. Our engineering approach will provide the next generation of synthetic biology engineers with the toolbox to design complex circuits of high potential industrial applications such as the photo-production or photo-degradation of chemical compounds with a very high level of integration.

For this purpose we have targeted on a cyanobacterium, a very chemically rich and versatile organism highly suitable for modeling, to be used as future platform for hydrogen production and biosolar applications. In particular, our synthetic biological approach aims at creating an anaerobic environment within the cell for an optimized, highly active iron-only hydrogenase by using an oxygen consuming device, which is connected to an oxygen sensing device and regulated by artificial circuits. This project will also help to establish a systematic hierarchical engineering methodology (parts, devices and systems) to design artificial bacterial systems using a truly interdisciplinary approach that decouples design from fabrication.

We aim to construct biological molecular parts by engineering proteins with new enzymatic activities and molecular recognition patterns, by combining computational and in-vitro evolution methodologies. Subsequently, we will design novel devices (e.g. input/output, regulatory and metabolic) by combining these parts and by using the emerging knowledge from systems biology. Furthermore, we shall design custom circuits of devices applying control engineering and optimization. In parallel, we will develop a cyanobacterial chassis able to integrate our synthetic circuits using a model-driven biotechnology.

Appel à propositions

FP6-2005-NEST-PATH
Voir d’autres projets de cet appel

Coordinateur

ECOLE POLYTECHNIQUE
Contribution de l’UE
Aucune donnée
Adresse
Route de Saclay
PALAISEAU
France

Voir sur la carte

Liens
Coût total
Aucune donnée

Participants (6)