Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-16

Functional synthetic membranes for GPCR based sensing

Objective

Odorant receptors, members of the GPCR family, are an excellent example of natural superiority in binding specificity of small and hydrophobic molecules. But difficulties in expression, isolation and solubilisation of GPCRs hampered the assay development and further applications in sensor devices far.

We propose modular engineering, including an in vitro strategy for protein expression in combination with synthetic amphiphiles mimicking a cell membrane, thus preserving the structural functional integrity of the GPCRs. By addition of the mere genetic information of the protein of interest, de novo protein synthesis and insertion in a supported membrane has been observed, recently. With the challenging example of odorant receptors as GPCR species, we would like to expand these findings towards a robust sensor platform taking advantage of the odorant receptors' superior recognition potential of small hydrophobic molecules.

Synthetic materials, with suitable amphiphilic properties as structural analogues to phospholipids, provide untapped design potential mimicking native membrane architectures. Use of these synthetic amphiphiles broadens the spectrum of sensor application towards air-borne sensors. The assembly of a synthetic membrane layer on the sensor surface by fusion of block copolymer vesicles and the functional incorporation of GPCRs will be monitored by a quartz crystal microbalance (QCM-D), sensitive to detect the membrane formation as well as the protein insertion even in the presence of optically opaque cell extracts.

Surface enhanced fluorescence spectroscopy will be employed to verify functional incorporation of the odorant receptors into the polymer membrane matrix. Structural and mobility properties of the membrane embedded proteins will be analyzed at the single-molecule level based on image correlation microscopy. Ultimately, ligand-receptor interactions will be assessed on a new sensor concept via optical and mechanical means.

Call for proposal

FP6-2005-NEST-PATH
See other projects for this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
EU contribution
No data

Participants (3)