Objective
We propose to study many-body entanglement quantification, detection and the creation of large-scale entanglement in connection with the recent experiments on cold gases, atoms in optical lattices, etc. This research would bridge the gap between quantum in formation and the physics of cold gases, would help interpreting experimental results from point of view of quantum information, and would also help designing new experiments.
Ways of entanglement quantification in many-body systems will be studied in the above-mentioned physical systems. It will be determined, what degrees of freedom are relevant in a certain scenario from the point of view of entanglement. I will identify necessary conditions for separability in these relevant degrees of freedom. Based on these conditions many-body entanglement quantification is possible.
The measures constructed should reflect how the many-body quantum state can be used as a resource in several tasks in quantum information or should correspond to the effect of some fundamental physical process in the system. Using the measures found, methods for the experimental detection of many-body entanglement will be developed. These must be based on quantities easily accessible in experiments. Based on the measures constructed, entanglement creation properties of physical processes will be studied.
The main questions are
- how much entanglement can be created with a particular physical process starting out from a non-entangled state?
- How can one optimize the process for maximum entanglement creation?
- How decoherence affects the dynamics?
- How can the dynamics protected against decoherence, i.e. how can the dynamics be purified?
The physical processes ('general physical actions') will be studied using completely positive maps exploiting the established isomporphism between CP maps and positive operators.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences optics
- natural sciences physical sciences quantum physics quantum optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2002-MOBILITY-5
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
MUENCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.