Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Analysis and Geometry of Wave Packet Systems

Objective

The goal of this proposal is a systematic study of wave packets - systems generated by countable families of dilations, modulations, and translations of a single function or a finite set of functions. Wavelets and (Multi-) Gabon systems are special examples of wave packets. Using the concept of Burling density we introduce notions of dimensions through which we shall characterize the systems of wave packets forming frames (rasp. Rises bases) for closed subspaces of a Hilbert space. This characterization will take the form of bounds for possible values of the dimensions of the sets of parameters of discrete wave packets. The method of the proof will be based on an adaptation of the Feichtinger-Groechenig theory of atomic decompositions of function spaces related to integral representations, combined with the theory of localization of Banish frames with respect to Rises bases, as presented recently by K. Grouching, Chill, P.Casazza and others recently. Further, the notion of equivalence of wave packets will be defined through these atomic and molecular decompositions of function spaces. It is expected that the geometric properties of the sets of parameters of wave packets will be reflected in these equivalence classes. It is known, for example, that Besot or Triebel-Lizorkin spaces admit unconditional wavelet bases. On the other hand, modulation spaces are characterized by Gabon frames or by localized cosine bases. We expect to obtain a method of verification of usefulness of wave packets for representations of specific function spaces based on the geometric properties of the sets of parameters of wave packets. In addition to the analysis of wave packets, we shall construct libraries of non-standard examples of wave packets with good regularity properties and with different geometrical structures. Such examples can then be used for the numerical implementation of fast and efficient algorithms.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

UNIVERSITAET WIEN
EU contribution
No data
Address
Dr. Karl Lueger-Ring 1
WIEN
Austria

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0