Objective
This NoE "CO2GeoNet" (13 institutes) contains a critical mass of research activity in the area of underground carbon dioxide (CO2) storage. World projections of energy use show that fossil fuel dependency will continue to 2030 and beyond; but sustainability will need CO2 emissions reducing by 60% by 2050. This will be difficult. It will require various strategies. The associated rise in global CO2 emissions, without abatement, will be at an average rate of 1.8% per annum (from the current value of 25Gt p.a. to 38Gt by 2030); a rise of over 50%. This will be catastrophic for the planet's sustainability. Urgent action is needed. Europe's CO2 emissions will rise by an average of 0.6% p.a. up to 2020, from a 2000 level of 3.1Gt to 3.5Gt by 2020. The rocks under the N. Sea have a theoretical capacity for storing over 800Gt of CO2. Capturing CO2 from industrial point sources and storing it underground (a process that mimics Nature) is a very attractive route to making cuts in CO2 emissions. CO2 capture and storage allows diverse fuel inputs/outputs, enhances security of supply and is well aligned with hydrogen production from fossil fuels. Through the Joule 2, FP4 & 5 projects Europe has led the world on R&D in this area, with rapid growth this decade. National programmes are also emerging. This success has a downside, by creating fragmentation through diversification. N. America despite its rejection of Kyoto (except Canada), has recently embraced CO2 capture and geological storage and is allocating huge resources (over $4bn) over the next 10 years. Europe, as a result, risks losing its head start. We therefore must work more effectively and restructure accordingly. The main aim of CO2GeoNet will be to integrate, strengthen, and build upon the momentum of previous and existing European R&D, as well as project European excellence internationally, so as to ensure that Europe remains at the forefront of CO2 underground storage research'
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels fossil energy coal
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- engineering and technology environmental engineering carbon capture engineering
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2002-ENERGY-1
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
SWINDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.