Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Multifuctional polymeric materials though nanostructuring

Objective

Nowadays, one of the main scientific challenges is the fabrication of nanostructured materials (polymer nanofibres and nanotubes) in demand for a broad range of applications. Electrospinning has been shown to be an effective method for the production of polymer fibres with diameters in the range from several micrometers down to tens of nanometers. It has been found that the fibre diameter can be controlled within a broad range by proper selection of the processing parameters. For selected applications i t is desirable to control not only the fibre diameter, but also the internal morphology. Nanostructured fibres as for example porous fibres are of interest for a broad range of applications in areas such as sensor or filter technologies and the preparati on of functional nanotubes by fibre templates. Tubes with such dimensions may be used to store or transport gases or fluids, for fuel cells, near field optics, nano-electronics and combinational chemistry, for applications in the area of catalysis, drug release or even encapsulation. Composite materials trying to mimic the exceptional properties of many biomaterials, and particularly polymer nanocomposites are materials with great scientific and technological challenges related to their promising nano structure-property correlations. The development of carbon-nanotube-reinforced polymer composites not only offers unique opportunities to improve the physical and mechanical properties of a given matrix but also allows the evaluation of the intrinsic pro perties of the reinforcing nanoscale phase. The key technical challenges which remain for such carbon-nanotube-reinforced polymers are the achievement of a homogeneous dispersion, good interfacial bonding and a controlled degree of alignment. It is also apparent from these studies that an ability to predict nanocomposite properties for a given filler type and loading fraction remains challenging.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-MOBILITY-11
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERG - Marie Curie actions-European Re-integration Grants

Coordinator

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
EU contribution
No data
Address
Calle Serrano 117
MADRID
Spain

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0