Skip to main content

Novel Advanced Transparent Conductive Oxides

Objective

The main objective of this project is the development of novel transparent conductive oxides (TCOs) with enhanced electrical properties and tuned transparency from UV to mid-IR. The innovative aspect of the project methodology is the strong correlation and interaction between theoretical first principle modelling and experimental studies. Three demonstrators have been selected to show the potential applications of the TCOs, which will be developed in this project, thus opening the way and giving the possibilities for Europe to lead in the new and emerging TCO-based technologies. TCOs show the unique combination of properties: co-existence of optical transparency in the visible region and controllability of electronic conduction from insulator to metal. Transparent conductive oxides continue to be in high demand because of the immediate applications they can find in a variety of new technologies, ranging from thin film coatings and sensor devices, to light detecting and emitting devices in telecommunications. However, the current industry standard, tin doped In2O3 (Indium Tin Oxide or ITO) suffers from the high raw material cost of indium. In addition, the non-optimal conductivity and transparency, and the chemical instability of ITO in some device structures, have limited its potential applications. Moreover, almost all TCOs used nowadays are n-type. The p-type TCOs reported to date have conductivities at least an order of magnitude lower than their n-type counterparts. If p-type materials with high conductivities and controlled transparencies could be manufactured industrially, a variety of new applications would open up, including transparent electronics and opto-electronics, organic light emitting diodes, integrated electro-optical (waveguide) sensors and functional windows. The aforementioned limitations of n-type TCOs and the lack of p-type TCOs with optimum transparent and conductive properties have been the motivation and the driving force for this project.

Funding Scheme

STREP - Specific Targeted Research Project

Coordinator

THALES
Address
Domaine De Corbeville
91404 Orsay
France

Participants (6)

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
France
Address
1, Place Aristide Briand
92190 Meudon
FOUNDATION FOR RESEARCH AND TECHNOLOGY - HELLAS
Greece
Address
Vassilika Vouton, Voutes
71110 Heraklion, Crete
INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE
France
Address
961 Rue De La Houille Blanche - Domaine Universitaire
38402 St Martin D'heres
MIKROVAKUUM - MIKROELEKTRONIKAI ES VAKUUMTECHNIKAI KFT.
Hungary
Address
Kerékgyarto U.10.
H-1147 Budapest
UMICORE SA/NV
Belgium
Address
Kasteelstraat 7
2250 Olen
UNIVERSITY COLLEGE CORK, NATIONAL UNIVERSITY OF IRELAND, CORK
Ireland
Address
Lee Maltings, Prospect Row
Cork