Objective
Scanning proximity probes (SPP) are uniquely powerful tools for analysis, manipulation and bottom-up synthesis: they are capable of addressing and engineering surfaces at the atomic level and are the key to unlocking the full potential of Nanotechnology. C urrent SPP nanotools are limited to single probes with pitifully slow processing rates and, even at the research level, attempts at multiprobe systems have achieved only a 32x32 array. This could be a terminal limitation for the future of Nanotechnology, i n particular for bottom-up manufacturing, with little prospect for economic throughputs, unless 2-dim. massively parallel probe arrays can be realised. Such a development would revolutionise Nanotechnology, triggering an avalanche of new products and proce sses in a wide range of applications including surface chemistry, materials and the life-health industries. This ground-breaking technology development is the ambitious principal aim of this proposal. Generic massively parallel intelligent cantilever-probe platforms will be produced through a number of techniques. The ultimate product will be, packaged VLSI NEMS-chip incorporating 128x128 proximal probes, fully addressable with control and readout interconnects and advanced software. To validate this novel technology, a series of demonstrations are planned where relevant SMEs will use this technology to carry out sub-10 nm metrology for high throughput manufacturing. Furthermore selected key applications and the results will be used to educate and inform in support of the development of new nanotechnology processes and products. It is the aim of PRONANO that the new massively parallel SPP nanotools with VLSI ASNEMS chips inside should empower nanotechnologists and drive the rapid development of nanoscienc e, leading to new nanotechnology processes and their industrial exploitation. They will secure the future of nanotechnology with economic throughputs leading to new manufacturing industries.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Call for proposal
FP6-2003-NMP-NI-3
See other projects for this call
Funding Scheme
IP - Integrated ProjectCoordinator
ERLANGEN
Germany
See on map
Participants (18)
STEYR-GLEINK
See on map
VARNA
See on map
VANDOEUVRE-LES-NANCY
See on map
GRADIGNAN
See on map
KASSEL
See on map
CHILTON, DIDCOT
See on map
JENA
See on map
WEILBURG
See on map
MUNCHEN
See on map
DRESDEN
See on map
ILMENAU
See on map
WROCLAW
See on map
BRATISLAVA
See on map
UPPSALA
See on map
NEUCHATEL
See on map
DORTMUND
See on map
ILMENAU
See on map
SEIBERSDORF
See on map