Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Detailed multi-physics modelling of friction stir welding

Objective

The objective of DEEPWELD is to develop a multi-physics multi-scale numerical tool for simulating the FrictionStir Welding process, that will be able to obtain accurate predictions of residual stresses, weld properties andtool loads. The new tool will be a large step forward compared to current thermo-mechanical solutions, indeedthe latter depend on well calibrated heat fluxes used as energy input in the model. These heat fluxes must beobtained by measurements of data during experiments. This prevents op timisation of the process parametersand real usage of the FSW simulation system in a design environment for predictive simulation of the behaviourof parts.A novel approach will be followed in DEEPWELD. A detailed simulation of the material flow around th e tool willbe coupled to a simulation of the complete welding process. The software developments forming the core ofDEEPWELD will be focussed on: a material flow solver capable of simulating the material flow around the tool; coupling of the material flo w solver to existing but modified industrial FE codes; this will allow the use ofall existing features of the industrial codes to handle industrial applications and ease exploitation of thenew tool in the industrial environment. since the temperature wil l strongly affect the rheology of the material, a material model (metallurgy)capable of dealing with the large variations in material properties throughout the weld region will bedeveloped and implemented; furthermore, an appropriate friction law which d escribes the behaviour at the interface between tool andweld material needs to be implemented.DEEPWELD also involves a strong experimental part. Experiments will be conducted at two levels to obtain onone hand the required input data for the simulation such as accurate reologhical material properties, improvedmetallurgy models, friction models, material flow visualization and on the other hand detailed #

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2003-AERO-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STIP - Specific Targeted Innovation Project

Coordinator

CENTRE DE RECHERCHE EN AERONAUTIQUE, ASBL
EU contribution
No data
Address
Bâtiment Mermoz 1, 2ème étage - Avenue Jean Mermoz, 30
GOSSELIES
Belgium

See on map

Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

My booklet 0 0