Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Notch and epithelial proliferation

Objective

During development the different organs and tissues of an organism have to grow harmoniously to reach their specific shapes and sizes. In the adult, organs have usually reached an equilibrium, where loss of cells must be compensated by tightly regulated proliferation. During cancer, groups of cells evade these controls and start to proliferate abnormally.
The Notch intercellular signalling pathway is very conserved throughout evolution and directs a wide variety of cell fate decisions and behaviours. The specificity of outcome relies on the implementation of different transcriptional programmes. For instance, in certain epithelia from very diverse animals, Notch controls epithelial cell proliferation and tissue growth. In order to identify the genes mediating this effect of Notch, using genomic approaches, I have identified the direct Notch targets during wing discs hyperplasia in Drosophila. Functional analysis revealed complex cross regulation between targets and feed forward logic loops. What are the important functional nodes of the network of genes activated by Notch, and how does it operate?
The current proposal seeks to reach an unprecedented detailed description of the Notch network mediating epithelial proliferation in Drosophila both during hyperplastic and neoplastic growth. More specifically, and using a combination of genome-wide approaches and elegant functional validation through Drosophila genetics, my aims are:
- describe the global microRNAs response to Notch in hyperplastic Drosophila wing discs and understand how it shapes the Notch network during hyperplasia;
- understand how this network is reshaped during the transition from hyperplastic to neoplastic growth, and identify a neoplastic specific programme;
Critical aspects of the Notch network governing tissue growth, are likely to be conserved. Therefore, insights coming from our fly studies will drive new hypothesis to understand Notch driven tumorigenesis of human solid cancers.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
EU contribution
€ 100 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0