Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Aeroelasticity Control for Transportation And GREen ENergy

Objective

The project focuses on two closely related engineering topics of importance to the EU economy and its society. The unrelenting increase in the length of modern suspended-span bridges makes them increasingly vulnerable to wind-induced vibrations and instabilities known respectively as buffeting and flutter (several bridge-construction projects with central span in excess of 1000m are currently being built or planned). In much the same way large wind turbines with power outputs in excess of 10MW and blade length well in excess of 100m are currently being investigated. As the blades of these machines increase in length, while also being constructed from lighter and more flexible materials, they too become susceptible to flutter and buffeting. In the case of large offshore wind farms, which may be exposed to highly unsteady aerodynamic loading, buffet suppression is especially important if this power generation means is to become widespread and economically attractive.
The central focus of the proposed work is to seek common techniques for the analysis and suppression of wind-induced oscillations in large flexible civil engineering structures. These apparently unrelated systems face similar challenges and a coordinated attack on both appears to be technically well motivated. The application of small aerodynamics devices will be investigated, in order to devise relatively high frequency and robust control systems, which will be both simulated and tested in wind tunnel.
The research is highly interdisciplinary, as it combines mechanics, aerodynamics and control.
The main beneficiaries of the work will be the bridge design and construction industry as well as the wind turbine industry. Secondary beneficiaries will include government and society at large, who will have access to cheaper mobility and cheaper wind energy. Additionally the work has important spin-off applications for the fluid-dynamic control of other flexible structures which operate in a turbulent flow field

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 231 283,20
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0