Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

"Optically detected magnetic resonance for ultra-sensitive chemical analysis, imaging and process monitoring"

Objective

"High-field nuclear magnetic resonance (NMR) is one of the most widely used techniques in chemical analysis, featuring the abilities to elucidate molecular form, structure and function, and image chemical samples nondestructively. Although the uses of NMR are many, much of the present methodology is constrained in application due to high purchase and operating costs, space restrictions and non-portability imposed by an NMR system. This proposal focuses on the development of a high-resolution, low-field NMR system suitable for portable use in online, or ""on the plant"", chemical process monitoring. The approach involves sensitive low-field magnetometry devices, based on nitrogen-vacancy (NV) pairs in diamond and alkali metal vapours, combined with efficient data acquisition techniques including Bayesian sampling and image reconstruction algorithms. These methods are well adapted to sensitive chemical analysis and imaging low field. As examples, high-sensitivity, high-resolution chemical signature identification is permitted by ultra-high (millihertz) measurement of spin-spin couplings; sensitive and highly spatially resolved imaging is uniquely obtained using arrays of NV diamond sensors. The outgoing phase of this project involves the development of optically sensed NMR for molecular characterisation and imaging, and optimisation of the technology with respect to sensitivity, data acquisition time, spectral resolution and data quality in targeted applications. The return phase will see these methods applied as tools for chemical reaction optimisation and process quality control. The proposed work will cover diverse fields in scientific research, including low-field NMR and MRI, laser spectroscopy and optics, signal processing, organic reactions, fluid rheology and microfluidics."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 282 109,20
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0