Skip to main content

Mechanisms of Fungiculture in Ambrosia Beetles

Objective

Farming insects are one of the most exciting examples for the success of symbioses in nature. Ants, termites and ambrosia beetles started to grow fungi for food 40–60 million years before the rise of human agriculture. Research on fungus-farming ants has revealed the association with nitrogen-fixing bacteria as fungus fertilizers and the application of antibiotics produced by symbiotic bacteria to control garden parasites. However, in the ecologically and economically important ambrosia beetles, it remains unknown how the beetle farmers induce the fruiting structures in their cultivars, how antagonistic fungi are suppressed, and which role bacteria play in the nitrogen budget of the insects. In the proposed project, I aim (i) to characterize the fungal garden community with and without the presence of farming beetles, (ii) to investigate ambrosia beetle defenses against pathogenic fungi as well as synergistic effects towards the cultivars, and (iii) to determine if fungus gardens are fertilized by certain bacteria. The results will yield important insights into the importance of multi-partite symbiotic associations for the maintenance of agriculture and, hence, the evolution of sociality in ambrosia beetles. Funding by an IEF would allow me to combine my expertise on the behavioral ecology and rearing of ambrosia beetles with state-of-the-art molecular and chemical-analytical techniques available at the Max Planck Institute for Chemical Ecology (MPI-CE). I am confident that this combination will enable us to obtain transformative results and set new paradigms in the research on ambrosia beetle symbiosis. Furthermore, the localization at the MPI-CE will provide me with a unique opportunity to obtain conceptual and methodological expertise in chemical analytics and molecular ecology, and it will thereby significantly contribute towards achieving my ultimate career goal of obtaining a leading position in fundamental research in evolutionary and behavioral ecology.

Field of science

  • /natural sciences/biological sciences/ecology
  • /natural sciences/chemical sciences/inorganic chemistry/inorganic compounds
  • /natural sciences/biological sciences/biological behavioural sciences/ethology/biological interaction
  • /natural sciences/biological sciences/microbiology/mycology
  • /natural sciences/biological sciences/microbiology/mycology/ethnomycology
  • /agricultural sciences/agriculture, forestry, and fisheries
  • /agricultural sciences/agriculture, forestry, and fisheries/agriculture
  • /natural sciences/biological sciences/biological behavioural sciences/behavioural ecology
  • /agricultural sciences/animal and dairy science

Call for proposal

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Address
Hofgartenstrasse 8
80539 Munich
Germany
Activity type
Other
EU contribution
€ 168 794,40
Administrative Contact
Jan Kellmann (Dr.)