European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Elucidating the enigmatic role of nuclear actin in genomic stability

Objective

Nuclear actin-related proteins (ARPs) are stoichiometric subunits of chromatin remodelers and specifically recognize and bind to (modified) histone proteins. In the case of the chromatin modifiers INO80, SWR1 and NuA4, canonical monomeric actin is also an important constituent of these large macromolecular complexes and actively takes part in the remodeling reaction. The main characteristic of actin, however, is its dynamic nature and its capacity to form polymeric actin filaments, which is tightly regulated by a plethora of actin binding proteins amongst them also nuclear ARPs. Interestingly, alteration of actin levels strongly sensitize cells to DNA damage in an enigmatic process and the chromatin-binding nuclear ARPs are obviously strong candidates that possibly couple actin homeostasis in the nucleus with a putative role in genomic integrity. Missing from the field is a genetic approach to specifically mutate actin in the chromatin modifier context and to analyse the impact of polymerization mutants in genomic integrity. The central hypothesis in this research proposal is that nuclear ARP/chromatin remodeler associated actin is a key mediator in genomic maintenance. This assumption is based on the very recent finding in the Gasser laboratory that interference with actin homeostasis renders cells to be hypersensitive to genomic insult as chromosomes are rapidly fragmented in presence of actin depolymerizing agent Latrunculin A and DNA damaging agent zeocin. The major challenge in this project is to bypass the paramount role of actin in the cytoskeleton and to focus on the fraction of nuclear ARP associated actin.
This will be achieved by genetically replacing nuclear ARPs with ARP-actin fusion constructs in the budding yeast S. cerevisiae, which will allow me to introduce actin mutants exclusively in a chromatin modifying context. Concomitantly, a new approach to generate actin probes for microscopy based on bicyclic peptides will be applied.

Call for proposal

FP7-PEOPLE-2013-IEF
See other projects for this call

Coordinator

FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
EU contribution
€ 207 928,80
Address
MAULBEERSTRASSE 66
4058 Basel
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Activity type
Research Organisations
Administrative Contact
Dorothy Searles (Mrs.)
Links
Total cost
No data