Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Skyrmion devices and their high frequency dynamics

Objective

Skyrmions are particle-like solutions of nonlinear equations that are now found in many physical contexts, such as Bose-Einstein condensates, the quantum Hall effect, and liquid crystals. Chrial magnetic skyrmions have recently been discovered, manifesting themselves as whirling spin structures including all possible spin directions. These novel spin textures are now being studied in earnest due to their prospects for applications in data storage.
Most current mass storage devices are hard disks, but further improvements are challenging due to the fragility of their mechanical parts. Therefore, comparably high density solid-state devices are required to improve mass storage performance reliability and reduce energy consumption. Skyrmions are excellent candidates for a breakthrough in this problem, since they can be moved using spin-polarised currents with exceptional ease. Experimental studies of magnetic skyrmions are at a very early stage, however: most work has been done on bulk crystals, with very little on technologically-compatible thin films and nothing on nanoscale devices.
The host group has recently demonstrated the stabilization of skyrmion textures in epilayers of FeCoSi and FeGe. This permits the fabrication of skyrmion-based spintronic devices. Their expertise in high frequency measurements of the spin dynamics of nanostructures is lacking, however. The experience that the fellow can bring from his background in a world-leading group in making and interpreting such measurements in conventional magnetic vortex-bearing nanostructures is essential to realize the technological potential of skyrmions in spintronics. Establishing methods for the high frequency excitation of skyrmion motion and its subsequent detection method will lead to improvements in spin-transfer efficiency by material engineering, analysis of transport mechanisms, and scaling into the nanometer regime, ultimately allowing electrical manipulation and detection of single skyrmions.

Call for proposal

FP7-PEOPLE-2013-IIF
See other projects for this call

Coordinator

UNIVERSITY OF LEEDS
EU contribution
€ 221 606,40
Address
WOODHOUSE LANE
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Martin Hamilton (Mr.)
Links
Total cost
No data