Objective
GALACTIC will offer an extremely talented and promising young researcher, with a PhD in chemistry and an extraordinary track record, world-class training through research in the cross-disciplinary and supra-sectorial field of organo-graphene electronics. The proposed research lies at the interface between supramolecular chemistry, solid-state physics and electrical engineering in the exciting new domain of graphene nanomaterials science. The overall mission is to train the fellow to become an independent scientist as well as to prepare her for a leading position in academia or industry in Europe.
The research in GALACTIC targets a fundamental breakthrough by chemically controlling the engineering of photochromic-graphene nanocomposites to enable the fabrication of graphene-based light-responsive nano-electronic devices featuring outstanding electrical performance. In order to do so, GALACTIC aims to make significant advances in graphene chemistry and organo-graphene hybrid materials and devices by:
- Improving the yield of the liquid phase exfoliation of graphite to give high quality monolayer and few-layer graphene with yields of > 8wt%.
- The opening of a light switchable band gap and the shifting of the Dirac point in graphene through non-covalent doping with photochromic molecules.
- The investigation and fine-tuning of the light-switchable charge transport of these new photochrome-graphene hybrids and architectures.
- The fabrication and testing of multifunctional organo-graphene devices utilizing these new photochrome-graphene nanohybrids and suitably functionalized photochromic SAM coated electrodes and dielectrics.
Ultimately, GALACTIC aims to greatly surpass the current state-of-the-art in graphene chemistry by using self-assembled monolayers (SAMs) to develop graphene-based transistors that can be switched on and off through light irradiation at specific wavelengths.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologynanotechnologynano-materialstwo-dimensional nanostructuresgraphene
- natural sciencesphysical sciencescondensed matter physicssolid-state physics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineering
- engineering and technologymaterials engineeringnanocomposites
Topic(s)
Call for proposal
FP7-PEOPLE-2013-IEF
See other projects for this call
Funding Scheme
MC-IEF - Intra-European Fellowships (IEF)Coordinator
67081 Strasbourg
France