Project description
Novel electromagnetic modes boost luminescent solar concentrator performance
Increasing the area with which we collect the sun’s rays to produce electricity could significantly boost our energy production capacity. Luminescent solar concentrators (LSCs) are transparent sheets of glass or plastic with embedded luminescent materials that absorb light and then fluoresce, creating a glow that propagates to the edges of the LSCs to solar cells. Their combination of large-area inexpensive collecting material and small-area expensive solar cell technology has great potential, but waveguide losses have limited their size to a few centimetres. The European Research Council-funded HyMoCo project will develop a novel waveguide exploiting so-called hybrid node modes with extremely low waveguide losses to enable unparalleled efficiency, size and cost.
Objective
The meaning of solar energy for future decentralized power supply will largely depend on both efficiency and cost of solar to electrical power conversion. All kinds of conversion strategies including photovoltaics, concentrated solar power, solar to fuel and others would benefit from efficiently collecting solar power on large areas. For this reason luminescent solar concentrators have been developed for over thirty years, but due to waveguide losses their maximum size is still limited to a few centimeters.
The proposed project suggests the exploitation of a new type of electromagnetic waveguide in order to realize passive planar concentrators of unsurpassed collection efficiency, size, concentration, lifetime and costs.
A dielectric TE1-mode shows a node, a position in the waveguide where no intensity is found. A thin film placed in this node remains largely “invisible” for the propagating mode. Such dielectric node modes (DNMs) have been investigated by the applicant in previous work, but only recently a silver island film (SIF) was for the first time placed in such a node. The resulting extremely low waveguide losses cannot be explained by our current understanding of waveguide modes and hint to a hybridization between the SIF-bound long-range surface plasmon polaritons (LRSPPs) and the DNMs into what we call hybrid node modes (HNMs).
The SIFs strongly interact with incident light. An appropriate nanopatterning of SIFs enables efficient excitation of low-loss HNMs modes collecting solar power over square meters and concentrating it. To achieve this goal new technological methods are used that enable patterning on the nanometer scale and low cost roll-to-roll processing at the same time. New measurement techniques and numerical simulation tools will be developed to investigate the HNMs – a novel kind of electromagnetic modes – and their exploitation in the passive solar concentrators.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology materials engineering coating and films
- engineering and technology nanotechnology nano-materials bulk nanostructured materials
- natural sciences computer and information sciences software software applications simulation software
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
42119 Wuppertal
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.