Objective During evolution, organisms adapt to diverse environmental conditions by evolving new morphological and/or biochemical traits, some of which are of impressive complexity. This is for example the case of eyes, wings or complex biochemical pathways, which all involve multiple components. The evolution of such complex traits has always intrigued evolutionary biologists, including Charles Darwin, and is still only partially understood. How can natural selection on random mutations lead over time to novel complex ecological adaptations that allow organisms to thrive in diverse environments? This question will be addressed here by studying a species complex that presents exceptional variation in a key ecological adaptation, namely C4 photosynthesis. This trait results from multiple anatomical and biochemical components that function together to increase plant productivity in warm and dry environments. Capitalizing on a species complex of grasses that includes C4 as well as the ancestral C3 photosynthetic types and multiple intermediate states, the ComplEvol project will combine methods from different fields to infer (i) the history of mutations that generated components for C4 photosynthesis during the dispersal into different ecological conditions, (ii) the factors controlling the spread of these mutations among populations, (iii) the effects of these mutations on the properties of the encoded C4 enzymes, (iv) the effects of different anatomical and biochemical C4 components on the performance of the plants (fundamental niche), and (v) the relationships between these components and the distribution of individuals in contrasted environments (realised niche). The incorporation of these different dimensions of evolution and ecology will shed new lights on the processes that allow over time the emergence of major ecological novelties through the repeated action of natural selection on minor changes within populations. Fields of science natural sciencesbiological sciencesevolutionary biologynatural sciencesbiological sciencesgeneticsmutationnatural sciencesbiological sciencesgeneticsgenomesnatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymesnatural sciencesbiological sciencesbotany Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-StG-2014 - ERC Starting Grant Call for proposal ERC-2014-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator THE UNIVERSITY OF SHEFFIELD Net EU contribution € 1 498 275,00 Address Firth court western bank S10 2TN Sheffield GB See on map Region Yorkshire and the Humber South Yorkshire Sheffield Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all THE UNIVERSITY OF SHEFFIELD GB Net EU contribution € 1 498 275,00 Address Firth court western bank S10 2TN Sheffield See on map Region Yorkshire and the Humber South Yorkshire Sheffield Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00