Project description
Harnessing built-in functionality in organic crystalline materials for future electronic devices
Organic crystalline materials with built-in functionality offer a versatile platform for designing innovative, low-cost devices with improved performance. The ERC-funded ICONICAL project aims to control charge and excited state dynamics in such materials to achieve this built-in functionality. Researchers will seek to tune molecular properties and control aggregation in crystalline states to design materials with specific properties, such as high charge carrier mobility and exciton diffusion coefficients. Another more complex functionality includes singlet exciton fission to increase solar cell efficiency. Researchers will combine organic synthesis approaches, computational chemistry and time-resolved spectroscopy to understand the relationship between molecular and solid-state structures and the electronic properties of organic crystalline materials. This fundamental understanding will have implications for the use of these materials in electronic devices.
Objective
The aim of the work proposed here is to achieve control over charge and excited state dynamics in organic crystalline materials and in this way to come to solid state materials with explicit built-in functionality. The charge and excited state dynamics do not only depend on the properties of individual molecules but are to a large extent determined by the interactions between multiple molecules. By careful engineering of the properties of individual molecules and of the way they aggregate in the solid crystalline state it is in principle possible to design materials that exhibit a specific functionality. Examples of this are materials that are optimized to give high charge carrier mobilities and high exciton diffusion coefficients. It is also possible to design more complex functionality. An example of this is singlet exciton fission, a process by which one singlet excited state transforms into a combination of two triplet states. This spin-allowed process can in principle increase the efficiency of organic solar cells by a factor 1.5. A second example is upconversion of low energy photons into higher energy photons. This is possible by combining two low-energy triplet excited states into a single singlet excited state by triplet-triplet annihilation. Finally, it is possible gain control over charge separation on the interface of two different materials to increase the charge separation efficiency in photovoltaic cells.
In this work, we will explore ways to achieve control of charge and exciton dynamics in a combined effort including organic synthesis, computational chemistry and time-resolved spectroscopy and conductivity experiments. This research represents a major step forward in the understanding of the relation between molecular and solid state structure and the electronic properties of organic crystalline materials. This is of considerable fundamental interest but also has direct implications for the utilization of these materials in electronic devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering crystals
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
- natural sciences physical sciences theoretical physics particle physics photons
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.