Objective The discovery of a Higgs like particle in its first science run shows that we are truly in the LHC era and when collisions resume we will learn more about the physics of the TeV scale. There are two main areas at the interface of particle physics and cosmology that the LHC will shed light on - If dark matter is a thermal relic then we naturally expect new particle physics close to this TeV energy range. The LHC will also help us learn about the nature of the electroweak sector and its behaviour during the early Universe.In this proposal we present a body of work which will combine information from the LHC with dark matter experiments and astronomical observations to understand both the nature of dark matter and the role of the Higgs sector in the first moments after the big bang. We will investigate dark matter by developing a new categorisation of interactions between the dark sector and the standard model. This will enable us to perform detailed collider and direct detection phenomenology in a more comprehensive way than current approaches while avoiding the problems which occur when those methods breakdown. Different schemes for mitigating against the upcoming problem of the neutrino floor in direct detection experiments will also be investigated.Many of the keys to understanding the particle nature of dark matter lie in astrophysics, and we will develop new techniques to understand the distribution of dark matter in the Universe, its behaviour and density in distant galaxies and its velocity dispersion in the Solar system, critical to predict event rates in detectors.We will use LHC and CMB data to answer important questions - Can the electroweak phase transition be first order? What is the role of the Higgs field during inflation? Can we use the electroweak sector to infer information about physics at high energy scale or the nature of inflation?The interdisciplinary experience of the PI will ensure the ambitious project is a success. Fields of science natural sciencesphysical sciencestheoretical physicsparticle physicsneutrinosnatural sciencesphysical sciencestheoretical physicsparticle physicsparticle acceleratornatural sciencesphysical sciencesastronomyphysical cosmologybig bangnatural sciencesphysical sciencesastronomyastrophysicsdark matterengineering and technologymedical engineeringdiagnostic imagingmagnetic resonance imaging Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-CoG-2014 - ERC Consolidator Grant Call for proposal ERC-2014-CoG See other projects for this call Funding Scheme ERC-COG - Consolidator Grant Coordinator KING'S COLLEGE LONDON Net EU contribution € 1 947 665,00 Address Strand WC2R 2LS London United Kingdom See on map Region London Inner London — West Westminster Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all KING'S COLLEGE LONDON United Kingdom Net EU contribution € 1 947 665,00 Address Strand WC2R 2LS London See on map Region London Inner London — West Westminster Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00