Objective
Despite a continued depletion of natural resources, ongoing increases in expenditures on energy and tighter legal constrains with regards to emission targets, more than half of the energy currently used in industrial plants, processes and engines all over the globe is wasted as residual heat or waste heat into the environment.
En3, a young technology company, founded in 2009 in Mecklenburg-Western Pomerania, Germany, has developed an expansion device for small scale Waste Heat Recovery systems (WHR-systems). Small scale means a net AC power rating of the WHR-system from about 1 to 50 kW.
EN3’s WHR-system is based on the Clausius Rankine Cycle (CRC) or alternatively on the Organic Rankine Cycle (ORC) technology and can substantially improve the efficiency of industrial processes, engines and facilities. They lower the primary energy consumption, improve the efficiency of engines and processes, reduce emissions and protect the environment and resources.
The great advantage of the technology is the flexibility in terms of the heat source. In principle WHR-systems can be adapted to different kinds of heat sources. Above-average market potential for the environmentally friendly and CO2 neutral electricity and heat production is identified for waste heat delivered from exhaust gas of combustion engines. Further applications are seen in the power generation through biomass combustion as well as in the geothermal and solar thermal energy generation.
The objective of the overall innovation project (phase one to three) is to develop and commercialise EN3’s small scale WHR-technology.
The objective of this feasibility study (phase one) is an analysis of the market for EN3’s small scale WHR-systems in the EU leading to an elaborated business plan showing entry and growth markets in Europe and outlining a clear plan of EN’s path forward - both financially and technically. The primary objective of the feasibility study is to identify the best entry market in the EU.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels biomass energy
- engineering and technology environmental engineering ecosystem-based management climatic change mitigation
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation combined heat and power
- engineering and technology environmental engineering energy and fuels renewable energy solar energy solar thermal
- engineering and technology environmental engineering energy and fuels renewable energy solar energy concentrated solar power
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
18182 Bentwisch
Germany
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.