Objective
The aim of this project is to enhance our understanding of how genetic selection for body weight in mouse drives changes at the RNA level. This is a key point for quantitative genetics because a better knowledge of the genetic control of gene expression would imply a better prediction of changes in the regulatory networks and subsequently in the phenotype. Moreover, the biological insight gained by this understanding could, in turn, be used by the animal breeding industry to design more efficient breeding strategies. However, generally, genetic studies focus on understanding mean phenotypic differences among genotypes, although genes can also lead differences in the phenotypic variance between genotypes. Thus, this research will use a systems approach to model the genetic control of both, the mean and the variance of gene expression, and to identify regulatory networks than can be modified by selection. In addition, important environmental effects, such as maternal effects (e.g. uterine capacity), play an important role on the response to selection for growth in mammals. The second project aim is to elucidate how maternal effects shape the expression of genes and gain insight into the mechanisms underpinning gene by environment interactions. The recent emergence of high throughput technologies such as mRNA sequencing allows the study of the genetic and environmental makeup of cellular phenotypes. Furthermore, answering these questions require experimental designs and biological resources that are not usually available. The Roslin Institute has an extraordinary resource to carry out this research. After many generations of divergent selection for body weight multiple mouse lines were inbred, and kept inbred through brother-sister mating for over fifty generations. Four of these lines will be used in the current project. Hence, this project will capitalize on this extraordinary resource jointly with the emerging genomic tools for addressing these important questions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics genetic selection
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences zoology mammalogy
- medical and health sciences clinical medicine embryology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EH8 9YL Edinburgh
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.