Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Readdressing Convective-Surface Interaction in Global Climate Models

Objective

A large part of our knowledge on climate change is provided by the usage of coupled atmospheric-ocean Global Climate Models (GCMs), which produce numerical simulations of the Earth’s climate system for both the present and the future. However, state-of-the-art GCMs show considerable systematic errors: they are limited by low spatial resolutions and by the problematic representation of many physical processes. In particular, one of the largest sources of uncertainty is associated with the coupling between the atmospheric circulation and the water cycle.
COGNAC is conceived as a fundamental theoretical project framed in this context. It aims at readdressing the representation of moist convection, clouds and precipitation and their interaction with the surface and the soil in GCMs. A recently developed theoretical framework capable of treating in a unified way the soil, the Planetary Boundary Layer (PBL), clouds, and both shallow and deep convection will be used. Such model - the Probabilistic Plume Model, PPM - is capable to represent the whole atmospheric column (from the PBL to the tropopause) with results comparable to Large Eddies Simulations and with a minor numerical cost. COGNAC aims at improving and refining the PPM and integrating it into two models, the LMDz GCM and the EC-Earth GCM, in the form a new unified parameterization. First evaluation will be carried out on Single Column Models, and hence extended to the full 3D case. Once operational, these new GCM configurations will provide a powerful tool to study complex interactions among surface, PBL and moist convection, as the ones occurring in the Sahel, the Amazon Rainforest or the Mediterranean region. These advancements will have notable potential for improving the representation, the forecast and the evaluation of the future changes of large-impact hydro-meteorological events.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 173 076,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 173 076,00
My booklet 0 0