Objective
A large part of our knowledge on climate change is provided by the usage of coupled atmospheric-ocean Global Climate Models (GCMs), which produce numerical simulations of the Earth’s climate system for both the present and the future. However, state-of-the-art GCMs show considerable systematic errors: they are limited by low spatial resolutions and by the problematic representation of many physical processes. In particular, one of the largest sources of uncertainty is associated with the coupling between the atmospheric circulation and the water cycle.
COGNAC is conceived as a fundamental theoretical project framed in this context. It aims at readdressing the representation of moist convection, clouds and precipitation and their interaction with the surface and the soil in GCMs. A recently developed theoretical framework capable of treating in a unified way the soil, the Planetary Boundary Layer (PBL), clouds, and both shallow and deep convection will be used. Such model - the Probabilistic Plume Model, PPM - is capable to represent the whole atmospheric column (from the PBL to the tropopause) with results comparable to Large Eddies Simulations and with a minor numerical cost. COGNAC aims at improving and refining the PPM and integrating it into two models, the LMDz GCM and the EC-Earth GCM, in the form a new unified parameterization. First evaluation will be carried out on Single Column Models, and hence extended to the full 3D case. Once operational, these new GCM configurations will provide a powerful tool to study complex interactions among surface, PBL and moist convection, as the ones occurring in the Sahel, the Amazon Rainforest or the Mediterranean region. These advancements will have notable potential for improving the representation, the forecast and the evaluation of the future changes of large-impact hydro-meteorological events.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- natural sciences earth and related environmental sciences atmospheric sciences meteorology atmospheric circulation
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences earth and related environmental sciences atmospheric sciences meteorology troposphere
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.